Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Peptides ; 177: 171215, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38608837

Melasma is a common skin disease induced by an increase in the content of melanin in the skin, which also causes serious physical and mental harm to patients. In this research, a novel peptide (Nigrocin-OA27) from Odorrana andersonii is shown to exert a whitening effect on C57 mice pigmentation model. The peptide also demonstrated non-toxic and antioxidant capacity, and can significantly reduce melanin content in B16 cells. Topical application effectively delivered Nigrocin-OA27 to skin's epidermal and dermal layers and exhibited significant preventive and whitening effects on the UVB-induced ear pigmentation model in C57 mice. The whitening mechanism of Nigrocin-OA27 may be related to reduced levels of the microphthalmia-associated transcription factor and the key enzyme for melanogenesis-tyrosinase (TYR). Nigrocin-OA27 also inhibited the catalytic activity by adhering to the active core of TYR, thereby reducing melanin formation and deposition. In conclusion, Nigrocin-OA27 may be a potentially effective external agent to treat melasma by inhibiting aberrant skin melanin synthesis.

2.
Biomed Pharmacother ; 171: 116184, 2024 Feb.
Article En | MEDLINE | ID: mdl-38244328

Pulmonary fibrosis is the result of dysfunctional repair after lung tissue injury, characterized by fibroblast proliferation and massive extracellular matrix aggregation. Once fibrotic lesions develop, effective treatment is difficult, with few drugs currently available. Here, we identified a short cyclic decapeptide RL-RF10 derived from frog skin secretions as a potential novel lead molecule for the amelioration of pulmonary fibrosis. In vivo experiments indicated that RL-RF10 treatment ameliorated lung histopathological damage and fibrogenesis after paraquat (PQ) induction in a concentration-dependent manner. On day 7, bronchoalveolar lavage fluid assays performed on mice showed that RL-RF10 exerted anti-inflammatory effects by decreasing the expression of inflammation-related factors, including transforming growth factor-ß1 (TGF-ß1) and tumor necrosis factor-α, in lung tissue. In addition, RL-RF10 down-regulated the levels of collagen I, collagen III, and vimentin, while increasing the expression of E-cadherin to inhibit epithelial-mesenchymal transition. Further research demonstrated that the SMAD2/3 signaling pathway, which is strongly linked to TGF-ß1, played a critical function in enhancing the pulmonary fibrosis relief achieved by RL-RF10. Both in vivo and in vitro assays showed that RL-RF10 treatment led to a significant reduction in the phosphorylation levels of SMAD2 and SMAD3 following PQ induction. Overall, we investigated the protective effects and underlying mechanisms of the RL-RF10 peptide against pulmonary fibrosis and demonstrated its potential as a novel therapeutic drug candidate for the treatment of pulmonary fibrotic diseases.


Lung Injury , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/metabolism , Paraquat , Transforming Growth Factor beta1/metabolism , Collagen/pharmacology , Amphibians/metabolism , Epithelial-Mesenchymal Transition
3.
Amino Acids ; 55(11): 1687-1699, 2023 Nov.
Article En | MEDLINE | ID: mdl-37794194

Excessive melanogenesis leads to hyperpigmentation, which is one of the common skin conditions in humans. Existing whitening cosmetics cannot meet market needs due to their inherent limitations. Thus, the development of novel skin-whitening agents continues to be a challenge. The peptide OA-VI12 from the skin of amphibians at high altitude has attracted attention due to its remarkable anti light damage activity. However, whether OA-VI12 has the skin-whitening effect of inhibiting melanogenesis is still. Mouse melanoma cells (B16) were used to study the effect of OA-VI12 on cell viability and melanin content. The pigmentation model of C57B/6 mouse ear skin was induced by UVB and treated with OA-VI12. Melanin staining was used to observe the degree of pigmentation. MicroRNA sequencing, quantitative real-time PCR (qRT-PCR), immunofluorescence analysis and Western blot were used to detect the change of factor expression. Double luciferase gene report experiment was used to prove the regulatory relationship between miRNA and target genes. OA-VI12 has no effect on the viability of B16 cells in the concentration range of 1-100 µM and significantly inhibits the melanin content of B16 cells. Topical application of OA-VI12, which exerted transdermal potency, prevented UVB-induced pigmentation of ear skin. MicroRNA sequencing and double luciferase reporter analysis results showed that miR-122-5p, which directly regulated microphthalmia-associated transcription factor (Mitf), had significantly different expression before and after treatment with OA-VI12. Mitf is a simple helix loop and leucine zipper transcription factor that regulates tyrosinase (Tyr) expression by binding to the M-box promoter element of Tyr. qRT-PCR, immunofluorescence analysis and Western blot showed that OA-VI12 up-regulated the expression of miR-122-5p and inhibited the expression of Mitf and Tyr. The effects of OA-VI12 on melanogenesis inhibition in vitro and in vivo may involve the miR-122-5p/Mitf/tyr axis. OA-VI12 represents the first report on a natural amphibian-derived peptide with skin-whitening capacity and the first report of miR-122-5p as a target for regulating melanogenesis, thereby demonstrating its potential as a novel skin-whitening agent and highlighting amphibian-derived peptides as an underdeveloped resource.


Melanins , MicroRNAs , Humans , Animals , Mice , Melanins/metabolism , Monophenol Monooxygenase/genetics , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Luciferases/metabolism , Peptides/pharmacology , Cell Line, Tumor
4.
Cell Mol Biol Lett ; 28(1): 61, 2023 Jul 28.
Article En | MEDLINE | ID: mdl-37501100

BACKGROUND: Amphibian derived pro-healing peptides as molecular probes might provide a promising strategy for development of drug candidates and elucidation of cellular and molecular mechanisms of skin wound healing. A novel skin amphibian peptide, OA-RD17, was tested for modulation of cellular and molecular mechanisms associated with skin wound healing. METHODS: Cell scratch, cell proliferation, trans-well, and colony formation assays were used to explore the pro-healing ability of peptide OA-RD17 and microRNA-632 (miR-632). Then, the therapeutic effects of OA-RD17 and miR-632 were assessed in mice, diabetic patient ex vivo skin wounds and SD rats. Moreover, hematoxylin and eosin (H&E), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and immunofluorescence staining were performed to detect skin wound tissue regeneration, inflammatory factors expression, and macrophage polarization. Finally, RNA sequencing, molecular docking, co-localization, dual luciferase reporter, real-time quantitative reverse transcription PCR (RT-qPCR), and Western blotting were used to explore the mechanism of OA-RD17 and miR-632 on facilitating skin wound healing. RESULTS: The non-toxic peptide (OA-RD17) promoted macrophage proliferation and migration by activating MAPK and suppressed inflammation by inhibiting NF-κB. In keratinocytes, OA-RD17 inhibited excessive inflammation, and activated MAPK via the Toll-like receptor 4 (TLR4) to promote proliferation and migration, as well as up-regulate the expression of miR-632, which targeted GSK3ß to activate Wnt/ß-catenin to boost proliferation and migration in a positive feedback manner. Notably, OA-RD17 promoted transition from the inflammatory to proliferative stage, accelerated epidermal and granulation regeneration, and exhibited therapeutic effects on mouse and diabetic patient ex vivo skin wounds. MiR-632 activated Wnt/ß-catenin to promote full-thickness skin wound healing in rats. CONCLUSIONS: OA-RD17 exhibited promising therapeutic effects on mice (full-thickness, deep second-degree burns), and ex vivo skin wounds in diabetic patients by regulating macrophages proliferation, migration, and polarization (MAPK, NF-κB), and keratinocytes proliferation and migration (TLR4/MAPK/miR-632/Wnt/ß-catenin molecular axis). Moreover, miR-632 also activated Wnt/ß-catenin to promote full-thickness skin wound healing in rats. Notably, our results indicate that OA-RD17 and miR-632 are promising pro-healing drug candidates.


MicroRNAs , beta Catenin , Mice , Rats , Animals , beta Catenin/metabolism , Toll-Like Receptor 4 , NF-kappa B/metabolism , Molecular Docking Simulation , Rats, Sprague-Dawley , Wound Healing , Peptides/pharmacology , MicroRNAs/genetics , Inflammation , Cell Proliferation/genetics
5.
Front Pharmacol ; 14: 1120228, 2023.
Article En | MEDLINE | ID: mdl-37377928

Amphibian-derived wound healing peptides thus offer new intervention measures and strategies for skin wound tissue regeneration. As novel drug lead molecules, wound healing peptides can help analyze new mechanisms and discover new drug targets. Previous studies have identified various novel wound healing peptides and analyzed novel mechanisms in wound healing, especially competing endogenous RNAs (ceRNAs) (e.g., inhibition of miR-663a promotes skin repair). In this paper, we review amphibian-derived wound healing peptides, including the acquisition, identification, and activity of peptides, a combination of peptides with other materials, and the analysis of underlying mechanisms, to better understand the characteristics of wound healing peptides and to provide a molecular template for the development of new wound repair drugs.

6.
Neural Regen Res ; 18(10): 2260-2267, 2023 Oct.
Article En | MEDLINE | ID: mdl-37056146

The regenerative capacity of the central nervous system is very limited and few effective treatments are currently available for spinal cord injury. It is therefore a priority to develop new drugs that can promote structural and functional recovery after spinal cord injury. Previous studies have shown that peptides can promote substantial repair and regeneration of injured tissue. While amphibians have a pronounced ability to regenerate the spinal cord, few studies have investigated the effect of amphibian spinal cord-derived peptides on spinal cord injury. Here we report for the first time the successful identification and isolation of a new polypeptide, VD11 (amino acid sequence: VDELWPPWLPC), from the spinal cord of an endemic Chinese amphibian (Odorrana schmackeri). In vitro experiments showed that VD11 promoted the secretion of nerve growth factor and brain-derived neurotrophic factor in BV2 cells stimulated with lipopolysaccharide, as well as the proliferation and synaptic elongation of PC12 cells subjected to hypoxia. In vivo experiments showed that intravertebral injection of VD11 markedly promoted recovery of motor function in rats with spinal cord injury, alleviated pathological damage, and promoted axonal regeneration. Furthermore, RNA sequencing and western blotting showed that VD11 may affect spinal cord injury through activation of the AMPK and AKT signaling pathways. In summary, we discovered a novel amphibian-derived peptide that promotes structural and functional recovery after spinal cord injury.

7.
J Neuroinflammation ; 20(1): 53, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36855153

BACKGROUND: Despite considerable efforts, ischemic stroke (IS) remains a challenging clinical problem. Therefore, the discovery of effective therapeutic and targeted drugs based on the underlying molecular mechanism is crucial for effective IS treatment. METHODS: A cDNA-encoding peptide was cloned from RNA extracted from Rana limnocharis skin, and the mature amino acid sequence was predicted and synthesized. Hemolysis and acute toxicity of the peptide were tested. Furthermore, its neuroprotective properties were evaluated using a middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and an oxygen-glucose deprivation/reperfusion (OGD/R) model in neuron-like PC12 cells. The underlying molecular mechanisms were explored using microRNA (miRNA) sequencing, quantitative real-time polymerase chain reaction, dual-luciferase reporter gene assay, and western blotting. RESULTS: A new peptide (NP1) with an amino acid sequence of 'FLPAAICLVIKTC' was identified. NP1 showed no obvious toxicities in vivo and in vitro and was able to cross the blood-brain barrier. Intraperitoneal administration of NP1 (10 nmol/kg) effectively reduced the volume of cerebral infarction and relieved neurological dysfunction in MCAO/R model rats. Moreover, NP1 significantly alleviated the decrease in viability and increase in apoptosis of neuron-like PC12 cells induced by OGD/R. NP1 effectively suppressed inflammation by reducing interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) levels in vitro and in vivo. Furthermore, NP1 up-regulated the expression of miR-6328, which, in turn, down-regulated kappa B kinase ß (IKKß). IKKß reduced the phosphorylation of nuclear factor-kappa B p65 (NF-κB p65) and inhibitor of NF-κB (I-κB), thereby inhibiting activation of the NF-κB pathway. CONCLUSIONS: The newly discovered non-toxic peptide NP1 ('FLPAAICLVIKTC') exerted neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKß/NF-κB axis. Our findings not only provide an exogenous peptide drug candidate and endogenous small nucleic acid drug candidate but also a new drug target for the treatment of IS. This study highlights the importance of peptides in the development of new drugs, elucidation of pathological mechanisms, and discovery of new drug targets.


MicroRNAs , Neuroprotective Agents , Reperfusion Injury , Animals , Rats , NF-kappa B , I-kappa B Kinase , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Protein Serine-Threonine Kinases , Peptides/pharmacology , Peptides/therapeutic use , Reperfusion Injury/drug therapy
8.
FASEB J ; 37(4): e22892, 2023 04.
Article En | MEDLINE | ID: mdl-36951647

Epidermal nerve fiber regeneration and sensory function are severely impaired in skin wounds of diabetic patients. To date, however, research on post-traumatic nerve regeneration and sensory reconstruction remains scarce, and effective clinical therapeutics are lacking. In the current study, localized treatment with RL-QN15, considered as a drug candidate for intervention in skin wounds in our previous research, accelerated the healing of full-thickness dorsal skin wounds in diabetic mice and footpad skin wounds in diabetic rats. Interestingly, nerve density and axonal plasticity in the skin wounds of diabetic rats and mice, as well as plantar sensitivity in diabetic rats, were markedly enhanced by RL-QN15 treatment. Furthermore, RL-QN15 promoted the proliferation, migration, and axonal length of neuron-like PC12 cells, which was likely associated with activation of the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway. The therapeutic effects of RL-QN15 were partially reduced by blocking the PI3K/Akt signaling pathway with the inhibitor LY294002. Thus, RL-QN15 showed positive therapeutic effects on the distribution of epidermal nerve fibers and stimulated the recovery of sensory function after cutaneous injury. This study lays a solid foundation for the development of RL-QN15 peptide-based therapeutics against diabetic skin wounds.


Diabetes Mellitus, Experimental , Proto-Oncogene Proteins c-akt , Rats , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases , Skin , Nerve Fibers/metabolism , Sensation , Peptides/pharmacology , Nerve Regeneration/physiology
9.
J Neuroinflammation ; 19(1): 284, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36457055

BACKGROUND: Due to the complexity of the mechanisms involved in epileptogenesis, the available antiseizure drugs (ASDs) do not meet clinical needs; hence, both the discovery of new ASDs and the elucidation of novel molecular mechanisms are very important. METHODS: BALB/c mice were utilized to establish an epilepsy model induced by pentylenetetrazol (PTZ) administration. The peptide HsTx2 was administered for treatment. Primary astrocyte culture, immunofluorescence staining, RNA sequencing, identification and quantification of mouse circRNAs, cell transfection, bioinformatics and luciferase reporter analyses, enzyme-linked immunosorbent assay, RNA extraction and reverse transcription-quantitative PCR, Western blot and cell viability assays were used to explore the potential mechanism of HsTx2 via the circ_0001293/miR-8114/TGF-ß2 axis. RESULTS: The scorpion venom peptide HsTx2 showed an anti-epilepsy effect, reduced the inflammatory response, and improved the circular RNA circ_0001293 expression decrease caused by PTZ in the mouse brain. Mechanistically, in astrocytes, circ_0001293 acted as a sponge of endogenous microRNA-8114 (miR-8114), which targets transforming growth factor-beta 2 (TGF-ß2). The knockdown of circ_0001293, overexpression of miR-8114, and downregulation of TGF-ß2 all reversed the anti-inflammatory effects and the influence of HsTx2 on the MAPK and NF-κB signaling pathways in astrocytes. Moreover, both circ_0001293 knockdown and miR-8114 overexpression reversed the beneficial effects of HsTx2 on inflammation, epilepsy progression, and the MAPK and NF-κB signaling pathways in vivo. CONCLUSIONS: HsTx2 suppressed PTZ-induced epilepsy by ameliorating inflammation in astrocytes via the circ_0001293/miR-8114/TGF-ß2 axis. Our results emphasized that the use of exogenous peptide molecular probes as a novel type of ASD, as well as to explore the novel endogenous noncoding RNA-mediated mechanisms of epilepsy, might be a promising research area.


MicroRNAs , RNA, Circular , Scorpion Venoms , Transforming Growth Factor beta2 , Animals , Mice , Inflammation , Mice, Inbred BALB C , MicroRNAs/genetics , NF-kappa B , Pentylenetetrazole/toxicity , Seizures/chemically induced , Transforming Growth Factor beta2/genetics , RNA, Circular/genetics
10.
J Immunol Methods ; 509: 113343, 2022 10.
Article En | MEDLINE | ID: mdl-36029800

Lipopolysaccharide (LPS) is a major pathogen-associated pattern molecule that can initiate lethal sepsis. Bioactive peptides in amphibian skin secretions, especially antimicrobial peptides, are essential components of the host immune system and help fight the microbial invasion. In this study, two peptides: peptide 1 (KINRKGPRPPG) and peptide 2 (INRKGPRPPG) were isolated, from skin secretions of the Chinese red belly frog (Bombina maxima). After stimulation with LPS, peptide 1 showed direct LPS-binding activity, low cytotoxicity, immunoregulatory functions in vitro, and neutralizing LPS effects in animal models. Thus, natural peptide 1 exhibits potential as an ideal candidate against LPS.


Anura , Lipopolysaccharides , Amino Acid Sequence , Animals , Anura/genetics , Base Sequence , Cloning, Molecular , Kinins , Lipopolysaccharides/pharmacology , Neuropeptides , Peptides/chemistry , Skin
11.
J Biol Chem ; 298(10): 102429, 2022 10.
Article En | MEDLINE | ID: mdl-36037970

Stroke can lead to severe nerve injury and debilitation, resulting in considerable social and economic burdens. Due to the high complexity of post-injury repair mechanisms, drugs approved for use in stroke are extremely scarce, and thus, the discovery of new antistroke drugs and targets is critical. Tryptophan hydroxylase 1 (TPH1) is involved in a variety of mental and neurobehavioral processes, but its effects on stroke have not yet been reported. Here, we used primary astrocyte culture, quantitative real-time PCR, double immunofluorescence assay, lentiviral infection, cell viability analysis, Western blotting, and other biochemical experiments to explore the protective mechanism of peptide OM-LV20, which previously exhibited neuroprotective effects in rats after ischemic stroke via a mechanism that may involve TPH1. First, we showed that TPH1 was expressed in rat astrocytes. Next, we determined that OM-LV20 impacted expression changes of TPH1 in CTX-TNA2 cells and exhibited a protective effect on the decrease in cell viability and catalase (CAT) levels induced by hydrogen peroxide. Importantly, we also found that TPH1 expression induced by OM-LV20 may be related to the level of change in the pituitary adenylate cyclase-activating peptide type 1 receptor (PAC1R) and to the JNK signaling pathways, thereby exerting a protective effect on astrocytes against oxidative stress. The protective effects of OM-LV20 likely occur via the 'PAC1R/JNK/TPH1' axis, thus highlighting TPH1 as a novel antistroke drug target.


Astrocytes , MAP Kinase Kinase 4 , Oxidative Stress , Peptides , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Stroke , Tryptophan Hydroxylase , Animals , Rats , Astrocytes/drug effects , Astrocytes/metabolism , Oxidative Stress/drug effects , Peptides/pharmacology , Stroke/prevention & control , Tryptophan Hydroxylase/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , MAP Kinase Kinase 4/metabolism
12.
Burns Trauma ; 10: tkac032, 2022.
Article En | MEDLINE | ID: mdl-35832307

Background: Amphibian-derived peptides exhibit considerable potential in the discovery and development of new therapeutic interventions for clinically challenging chronic skin wounds. MicroRNAs (miRNAs) are also considered promising targets for the development of effective therapies against skin wounds. However, further research in this field is anticipated. This study aims to identify and provide a new peptide drug candidate, as well as to explore the underlying miRNA mechanisms and possible miRNA drug target for skin wound healing. Methods: A combination of Edman degradation, mass spectrometry and cDNA cloning were adopted to determine the amino acid sequence of a peptide that was fractionated from the secretion of Odorrana andersonii frog skin using gel-filtration and reversed-phase high-performance liquid chromatography. The toxicity of the peptide was evaluated by Calcein-AM/propidium iodide (PI) double staining against human keratinocytes (HaCaT cells), hemolytic activity against mice blood cells and acute toxicity against mice. The stability of the peptide in plasma was also evaluated. The prohealing potency of the peptide was determined by MTS, scratch healing and a Transwell experiment against HaCaT cells, full-thickness injury wounds and scald wounds in the dorsal skin of mice. miRNA transcriptome sequencing analysis, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting were performed to explore the molecular mechanisms. Results: A novel peptide homodimer (named OA-GL17d) that contains a disulfide bond between the 16th cysteine residue of the peptide monomer and the sequence 'GLFKWHPRCGEEQSMWT' was identified. Analysis showed that OA-GL17d exhibited no hemolytic activity or acute toxicity, but effectively promoted keratinocyte proliferation and migration and strongly stimulated the repair of full-thickness injury wounds and scald wounds in the dorsal skin of mice. Mechanistically, OA-GL17d decreased the level of miR-663a to increase the level of transforming growth factor-ß1 (TGF-ß1) and activate the subsequent TGF-ß1/Smad signaling pathway, thereby resulting in accelerated skin wound re-epithelialization and granular tissue formation. Conclusions: Our results suggest that OA-GL17d is a new peptide drug candidate for skin wound repair. This study emphasizes the importance of exogenous peptides as molecular probes for exploring competing endogenous RNA mechanisms and indicates that miR-663a may be an effective target for promoting skin repair.

13.
Biochem Biophys Res Commun ; 615: 94-101, 2022 07 30.
Article En | MEDLINE | ID: mdl-35609421

Understanding microglia development could improve our understanding of the central nervous system (CNS) and neurological diseases. To explore the immune phenotypic changes that occur in microglia during development, we studied the morphology, inflammatory response, and expression of several important immune-related proteins in normal microglia from the embryonic, neonatal (postnatal day 3), and adult stages. Results showed that implantation of microglia into the CNS until adulthood resulted in dynamic changes in the expression levels of CD11b (α chain of complement receptor 3) and CX3CR1 (a chemokine receptor), which were consistent and correlated. Expression of proinflammatory cytokines in microglia during development is dynamic and highest in perinatal period. The inflammatory response of microglia was more vigorous and intense in the neonatal microglia than in the adult microglia. Furthermore, the morphology and function of neonatal and adult microglia differed, and thus neonatal microglia cannot be used in lieu of adult microglia for functional studies. Taken together, our results suggest that microglial integrin, chemokine receptors, and inflammatory responses vary with developmental age, which is an important finding for studying the role of microglia in different age-related neurological diseases.


Microglia , Receptors, Chemokine , Adult , CX3C Chemokine Receptor 1/metabolism , Central Nervous System/metabolism , Cytokines/metabolism , Humans , Infant, Newborn , Integrins/metabolism , Microglia/metabolism , Receptors, Chemokine/metabolism
14.
Biomed Pharmacother ; 150: 112987, 2022 Jun.
Article En | MEDLINE | ID: mdl-35462334

Although amphibian-derived bioactive peptides have attracted increasing attention for their potential use in the treatment of photodamage, research is still in its infancy. In this study, we obtained a new antioxidant peptide, named OA-GI13 (GIWAPWPPRAGLC), from the skin of the odorous frog Odorrana andersonii and determined its effects on ultraviolet B (UVB)-induced skin photodamage as well as its possible molecular mechanisms. Results showed that OA-GI13 directly scavenged free radicals, maintained the viability of hydrogen peroxide-challenged keratinocytes, promoted the release of superoxide dismutase, catalase, and glutathione, and reduced the level of lactate dehydrogenase. Furthermore, topical application of OA-GI13 in mice alleviated dorsal skin erythema and edema and protected the skin against UVB irradiation by increasing antioxidant levels and decreasing peroxide, malondialdehyde, and 8-hydroxydeoxyguanosine levels. OA-GI13 also alleviated oxidative stress injury in vivo and in vitro, possibly by inhibiting p38 protein phosphorylation. Our study confirmed the anti-photodamage effects of this novel amphibian-derived peptide, thus providing a new molecule for the development of drugs and topical agents for the treatment of skin photodamage.


Antioxidants , Skin , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Mice , Oxidative Stress , Peptides/chemistry , Ranidae/metabolism , Ultraviolet Rays/adverse effects
15.
Biochem Biophys Res Commun ; 598: 124-130, 2022 04 02.
Article En | MEDLINE | ID: mdl-35158211

At present, there are no satisfactory therapeutic drugs for the functional recovery of spinal cord injury (SCI). We previously identified a novel peptide (OM-LV20) that accelerated the regeneration of injured skin tissues of mice and exerts neuroprotective effects against cerebral ischemia/reperfusion injury in rats. Here, the intraperitoneal injection of OM-LV20 (1 µg/kg) markedly improved motor function recovery in the hind limbs of rats with traumatic SCI, and further enhanced spinal cord repair. Administration of OM-LV20 increased the number of surviving neuron bodies, as well as the expression levels of brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB). In the acute stage of SCI, OM-LV20 treatment also increased superoxide dismutase and glutathione content but decreased the levels of malonaldehyde and nitric oxide. Thus, OM-LV20 significantly promoted structural and functional recovery of SCI in adult rats by increasing neuronal survival and BDNF and TrkB expression, and thereby regulating the balance of oxidative stress. Based on our knowledge, this research is the first report on the effects of amphibian-derived peptide on the recovery of SCI and our results highlight the potential of peptide OM-LV20 administration in the acceleration of the recovery of SCI.


Peptides/pharmacology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Female , Rats, Sprague-Dawley , Receptor, trkB/metabolism , Recovery of Function/drug effects , Regeneration/drug effects , Spinal Cord Injuries/metabolism
16.
J Photochem Photobiol B ; 224: 112327, 2021 Nov.
Article En | MEDLINE | ID: mdl-34628205

Given the adverse impact of ultraviolet irradiation on human skin, as well as currently limited interventions, the discovery of new molecules with anti-photodamage potency remains critical. In this research, we obtained a new bioactive peptide (named OS-LL11, amino acid sequence 'LLPPWLCPRNK') from Odorrana schmackeri. Results showed that OS-LL11 could directly scavenge free radicals and sustain the viability of mouse keratinocytes challenged by ultraviolet B (UVB) irradiation or hydrogen peroxide (H2O2) by decreasing the levels of lipid peroxidation, malondialdehyde, and reactive oxygen species while increasing the level of catalase, Keap-1, HO-1, GCLM, and NQO1. Interestingly, topical application of OS-LL11 protected mouse skin against UVB irradiation damage by up-regulating the levels of superoxide dismutase, glutathione, and nitric oxide, but down-regulating the levels of H2O2, IL-1α, IL-1ß, IL-6, TNF-α, 8-OHdG, Bcl-2, and Bax, as well as the number of apoptotic bodies. Our research demonstrated the anti-photodamage activity of a novel amphibian-derived peptide and the potential underlying mechanisms related to its free radical scavenging ability and antioxidant, anti-inflammatory, and anti-apoptotic activities. This study provides a new molecule for the development of anti-skin photodamage drugs or cosmetics and highlights the prospects of amphibian-derived peptides in photodamaged skin intervention.


Amphibians/metabolism , Antioxidants/pharmacology , Peptides/pharmacology , Skin/radiation effects , Ultraviolet Rays , Amino Acid Sequence , Animals , Animals, Outbred Strains , Base Sequence , DNA, Complementary , Mice , Oxidative Stress/drug effects , Peptides/chemistry , Peptides/genetics , Peptides/isolation & purification , Skin/drug effects
17.
J Nanobiotechnology ; 19(1): 309, 2021 Oct 09.
Article En | MEDLINE | ID: mdl-34627291

BACKGROUND: Skin wound healing remains a considerable clinical challenge, thus stressing the urgent need for the development of new interventions to promote repair. Recent researches indicate that both peptides and nanoparticles may be potential therapies for the treatment of skin wounds. METHODS: In the current study, the mesoporous polydopamine (MPDA) nanoparticles were prepared and the peptide RL-QN15 that was previously identified from amphibian skin secretions and exhibited significant potential as a novel prohealing agent was successfully loaded onto the MPDA nanoparticles, which was confirmed by results of analysis of scanning electron microscopy and fourier transform infrared spectroscopy. The encapsulation efficiency and sustained release rate of RL-QN15 from the nanocomposites were determined. The prohealing potency of nanocomposites were evaluated by full-thickness injured wounds in both mice and swine and burn wounds in mice. RESULTS: Our results indicated that, compared with RL-QN15 alone, the prohealing potency of nanocomposites of MPDA and RL-QN15 in the full-thickness injured wounds and burn wounds in mice was increased by up to 50 times through the slow release of RL-QN15. Moreover, the load on the MPDA obviously increased the prohealing activities of RL-QN15 in full-thickness injured wounds in swine. In addition, the obvious increase in the prohealing potency of nanocomposites of MPDA and RL-QN15 was also proved by the results from histological analysis. CONCLUSIONS: Based on our knowledge, this is the first research to report that the load of MPDA nanoparticles could significantly increase the prohealing potency of peptide and hence highlighted the promising potential of MPDA nanoparticles-carrying peptide RL-QN15 for skin wound therapy.


Dermatologic Agents , Indoles , Nanoparticles/chemistry , Peptides , Polymers , Wound Healing/drug effects , Animals , Dermatologic Agents/chemistry , Dermatologic Agents/pharmacokinetics , Dermatologic Agents/pharmacology , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/pharmacology , Male , Mice , Peptides/chemistry , Peptides/pharmacokinetics , Peptides/pharmacology , Polymers/chemistry , Polymers/pharmacokinetics , Polymers/pharmacology , Skin/chemistry , Skin/injuries , Skin/metabolism , Swine
18.
Nat Prod Res ; 35(20): 3514-3518, 2021 Oct.
Article En | MEDLINE | ID: mdl-31960722

In clinical trials, the healing of wounds remains a substantial physiological and financial incumbrance on patients. Therefore, the development of new drugs that can accelerate wound healing is vital. Based on genomic methods, we identified a new peptide (RL-RL10) with the amino acid sequence 'RLFKCWKKDS' from the skin of an amphibian frog species (Rana limnocharis). RL-RL10 promoted wound healing of human keratinocytes (HaCaT) in a concentration-dependent manner. RL-RL10 also had an effect on the migration and proliferation of HaCaT cells and promoted healing of a full-thickness wound in mice in a dose-dependent manner. In conclusion, we discovered RL-RL10 that promoted healing activity of cellular and animal wounds, thus providing a new peptide template for the development of novel wound-repairing drugs.


Genomics , Peptides , Animals , Humans , Mice , Peptides/pharmacology , Ranidae
19.
Biochem Biophys Res Commun ; 534: 442-449, 2021 01 01.
Article En | MEDLINE | ID: mdl-33248693

Ischemic stroke is a severe threat to human health due to its high recurrence, mortality, and disability rates. As such, how to prevent and treat ischemic stroke effectively has become a research hotspot in recent years. Here, we identified a novel peptide, named HsTx2 (AGKKERAGSRRTKIVMLKCIREHGH, 2 861.855 Da), derived from the scorpion Heterometrus spinifer, which showed obvious anti-apoplectic effects in rats with ischemic stroke. Results further demonstrated that HsTx2 significantly reduced formation of infarct area and improved behavioral abnormalities in ischemic stroke rats. These protective effects were likely exerted via activation of the mitogen-activated protein kinase (MAPK) signaling pathway, i.e., up-regulation of phosphorylated ERK1/2 in both rat cerebral cortex and activated microglia (AM); up-regulation of phosphorylated p38 (p-p38) in the cerebral cortex; and inhibition of phosphorylated JNK and p-p38 levels in the AM. In conclusion, this study highlights HsTx2 as a potential neuroprotective agent for stroke.


Brain Ischemia/drug therapy , MAP Kinase Signaling System/drug effects , Neuroprotective Agents/therapeutic use , Scorpion Venoms/therapeutic use , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Male , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Rats , Rats, Sprague-Dawley , Scorpion Venoms/chemistry , Scorpion Venoms/isolation & purification , Scorpions/chemistry
20.
Pharmacol Res ; 163: 105296, 2021 01.
Article En | MEDLINE | ID: mdl-33220421

Despite extensive efforts to develop efficacious therapeutic approaches, the treatment of skin wounds remains a considerable clinical challenge. Existing remedies cannot sufficiently meet current needs, so the discovery of novel pro-healing agents is of growing importance. In the current research, we identified a novel short peptide (named RL-QN15, primary sequence 'QNSYADLWCQFHYMC') from Rana limnocharis skin secretions, which accelerated wound healing in mice. Exploration of the underlying mechanisms showed that RL-QN15 activated the MAPK and Smad signaling pathways, and selectively modulated the secretion of cytokines from macrophages. This resulted in the proliferation and migration of skin cells and dynamic regulation of TGF-ß1 and TGF-ß3 in wounds, which accelerated re-epithelialization and granulation tissue formation and thus skin regeneration. Moreover, RL-QN15 showed significant therapeutic potency against chronic wounds, skin fibrosis, and oral ulcers. Our results highlight frog skin secretions as a potential treasure trove of bioactive peptides with healing activity. The novel peptide (RL-QN15) identified in this research shows considerable capacity as a candidate for the development of novel pro-healing agents.


Oral Ulcer/drug therapy , Peptides/therapeutic use , Skin/drug effects , Wound Healing/drug effects , Animals , Fibrosis , Male , Mice , Mitogen-Activated Protein Kinases/metabolism , Peptides/pharmacology , RAW 264.7 Cells , Ranidae , Skin/injuries , Skin/metabolism , Skin/pathology , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta3/metabolism
...